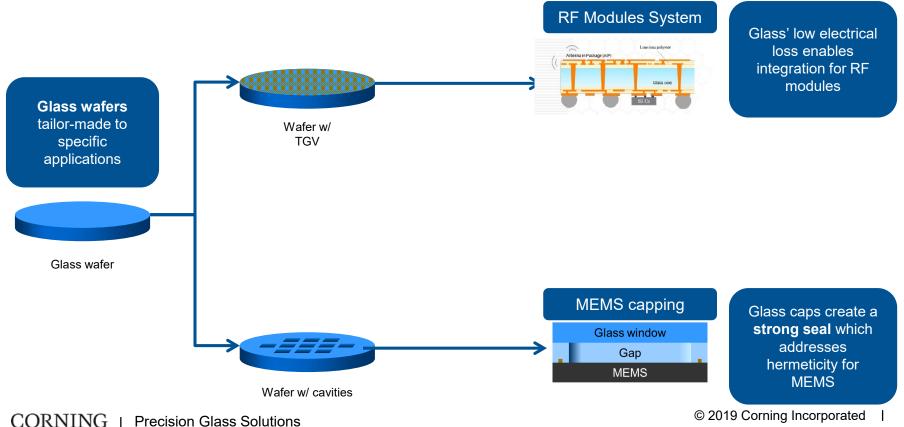
Advanced RF MEMS Switch Devices using Glass Packaging

Rajiv Parmar & JunRo Yoon Corning Precision Glass Solutions

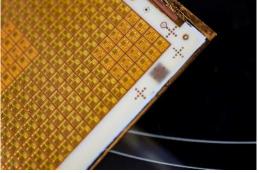
Chris Keimel Chief Technology Officer, Menlo Microsystems


BIT Congress, Rome Italy March 7, 2019 Outline

- Development of Glass as a Substrate and Packaging Material
 - Material properties
 - Supply Chain
- Evolution for Radio Frequency Front Ends
- RF Applications
 - LC-based Filters
 - MEMS Switches

The inherent properties of glass make it an excellent material of choice for RF and MEMS

		MEMS and RF				
		Packaging	As a Carrier	MEMS Capping Material		
Ņ	Range of CTEs	\checkmark	\checkmark	\checkmark		
f glas	Optical transparency		\checkmark	\checkmark		
Properties of glass	Low electrical loss	\checkmark				
	Flatness & smoothness	\checkmark	\checkmark	\checkmark		
	Stiffness	\checkmark	\checkmark	\checkmark		
	Variety of thicknesses	\checkmark	\checkmark	\checkmark		
	Scalability	\checkmark	\checkmark	\checkmark		

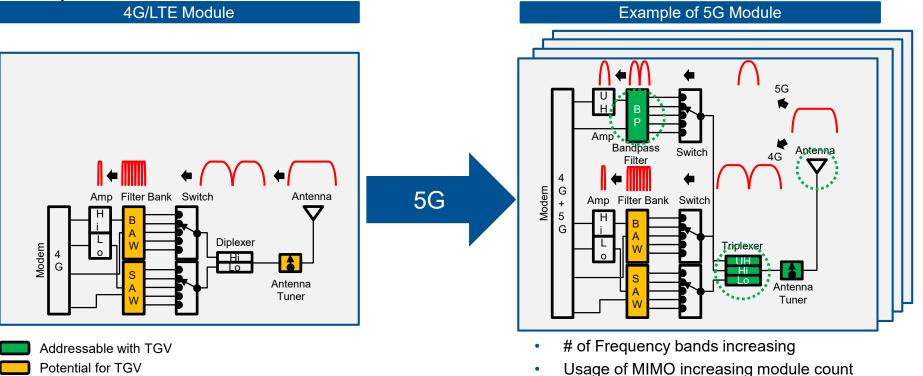

Leveraging Material Properties into Performance Advantages

4

Corning's Through Glass Via Capabilities We've made significant investments in precise TGV manufacturing

	Dimensions	Wafer: up to 300mm diameter	
(Panel: up to 500x500mm	
+ Vias)	Thickness	100µm - 500µm	
S + /	Via Diameter	30µm - 100µm → <30µm	
blas	Pitch	Min. 2x via diameter	
TGV	Process Control	Positional accuracy: <± 10µm Yield: 42% improvement since '18 Metrology: 26x faster throughput since '18	
	Volume	100s per month \rightarrow 1000s in '19	
zed	Process Control	90% production grade selects	
talli TGV	Partners	Multiple in Asia and US	Precisio
Meta TC	Volume	100s per month	Capabili

Precision via control at high throughput; Capabilities to make different via shapes

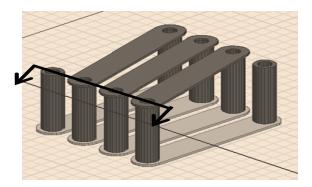

5

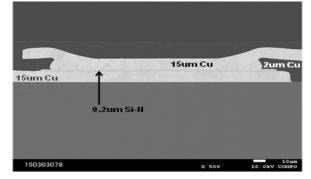
Outline

- Development of Glass as a Substrate and Packaging Material
 - Material properties
 - Supply Chain
- Evolution for Radio Frequency Front Ends
- Use Cases
 - LC-based Filters
 - MEMS Switches

Handset RFFE evolution

$4G \rightarrow 5G$ is increasing demand for high performance substrates like glass with precision vias

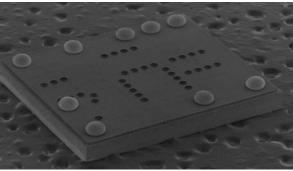

Potential for TGV


Integration and low loss instrumental for low cost

Outline

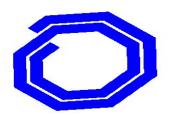
- Development of Glass as a Substrate and Packaging Material
 - Material properties
 - Supply Chain
- Evolution for Radio Frequency Front Ends
- Use Cases
 - Filters
 - MEMS Switches

High Q inductors/capacitors have been demonstrated

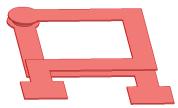


Cross-sectional SEM of Cu-Silicon Nitride-Cu MIM structure

3D rendering of inductor structure, topdown view Cross-sectional SEM of a fabricated 3D inductor


Source: Yun, Kuramochi, Shorey, "Through Glass Via (TGV) Technology for RF Applications", IMAPS 2015, Orlando, FL

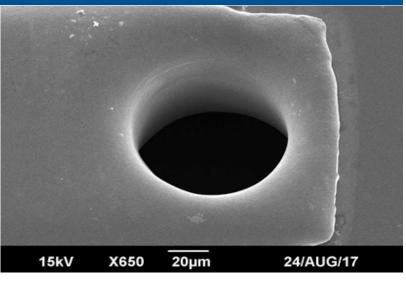
- Completed LC Network
- High Q inductance from 3D Solenoid inductor
- Capacitance achieved through MIM structure


Inductor Structures Compared

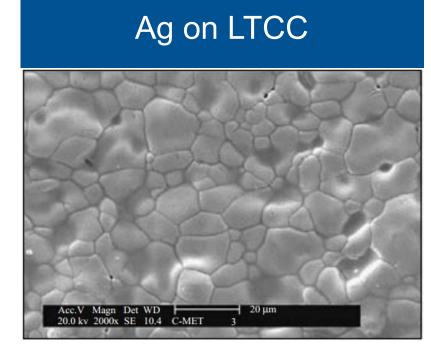
Inductor type	Inductance@ 100MHz (nH)	Q ^{PEAK} @F /GHz	Q @900MHz	SRF (GHz)
LTCC	2.0	80 @ 3.95	55	8.68
TGV (SG3)	2.0	108 @ 3.95	61	>10
2D Glass	1.9	70 @ 5.94	27	>10
HRS	1.9	64 @ 4.48	25	>10

2D HRS inductor

LTCC inductor

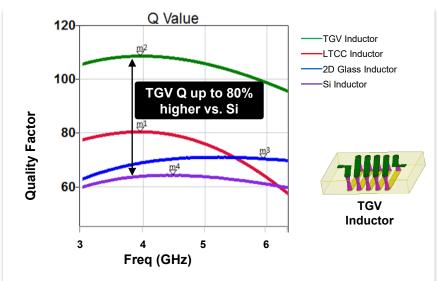

2D Glass inductor

10

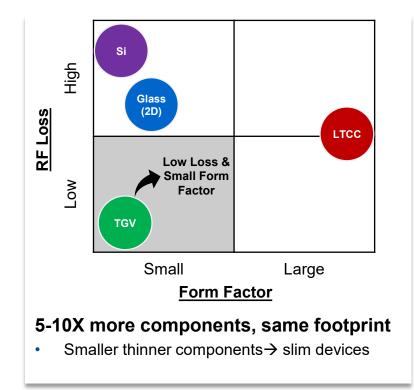

Metal on glass achieves much smoother surfaces

Vs.

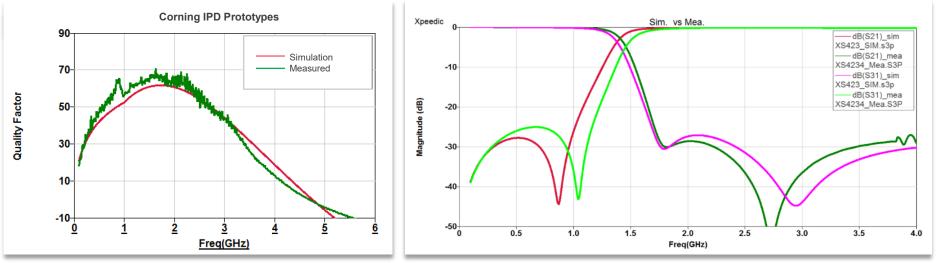
Cu on glass

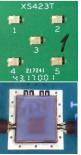


Source: U. of Florida


Source: S. Rane et al Soldering and Surface Mount Technology ·

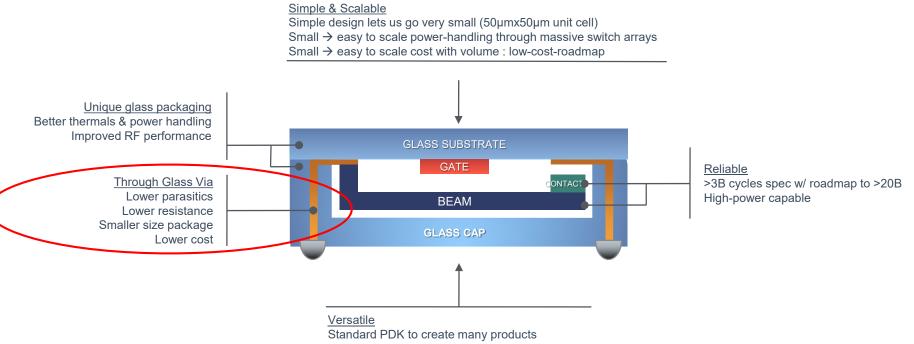
Handset RFFE evolution TGV IPDs offer lower RF loss and small form factor




80% higher Q (lower RF loss) vs. Si

- Use same battery → Increase talk time
- Use smaller battery → Save space
- Use cheaper battery chemistry \rightarrow Save up to ¢2/ phone

TGV IPD prototypes show high Q and low capacitance, which validates our model

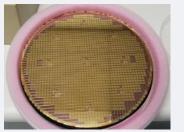

- First TGV IPD prototype designed at sub-3 GHz shows higher Q (peak 70) vs. Si (peak 60) → Next, we are developing sub-7 GHz bandpass filter
- Developed knowledge in TGV and metallization processes with fab partners
- We would like to propose jointly developing prototypes with your design

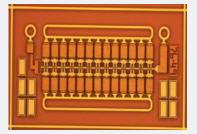
Outline

- Development of Glass as a Substrate and Packaging Material
 - Material properties
 - Supply Chain
- Evolution for Radio Frequency Front Ends
- Use Cases
 - LC-based Filters
 - MEMS Switches

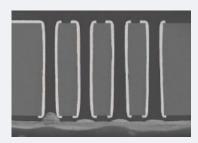
CORNING | Precision Glass Solutions

RF Switches Menlo Micro introduces an ideal switch enabled by Corning TGVs


Shorter design cycles \rightarrow Quicker to market

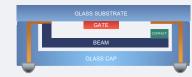

How is it made?

Revolutionary materials & processing combined with standard, scalable semiconductor manufacturing techniques


WAFER-LEVEL MANUFACTURING

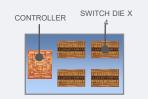
Wafer-scale manufacturing on 8 inch (200mm) glass substrates

Scalable series / parallel switch architecture: Design ability to scale up to 1000V+ and 10A+



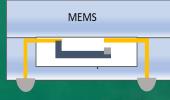
Through Glass Vias Miniaturized packaging with highest performance

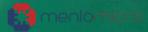
Wafer Level Chip-Scale-Package from 16mm² to < 1mm²


APPLICATION-SPECIFIC CONFIGURATIONS

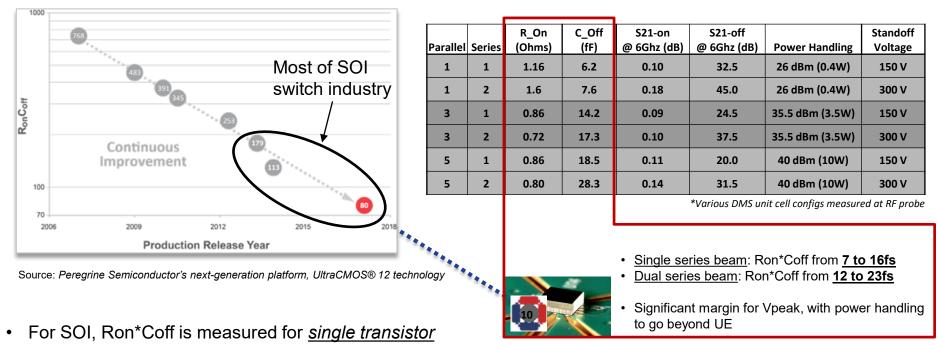
Core Switch Simplest, smallest building block can be integrated into many power or RF applications.

Switch with integrated controls Simpler control for high channel counts, decrease need for external components


Multiple Switch die, w/routing & control: For matrix and high-density switching systems.


System-on-Chip Integrate passives & other structures on die along with Menlo switches to create miniaturized RF & Power subsystems.

MM5130

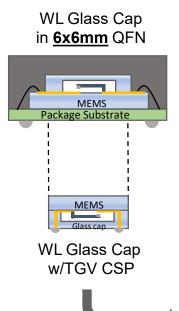


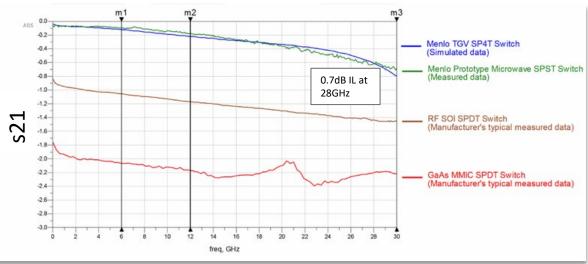
a series of the

RF Switches

Metal-on-glass platform creates ideal RF environment for low Ron*Coff

• Actual switch product needs transistor stacks for up to 80V




RF Switches

Lowest Losses from DC to mmWave

Previous generation of packaging (2017/2018)

Current generation of packaging

With TGV, everything gets better from an RF point of view:

- Lower parasitics, Lower bulk resistance/IL
- Improved thermals, better power handling
- Smaller size, lower cost

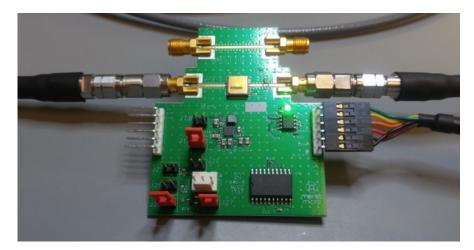
Advances in wafer-level glass packaging show mmWave performance is achievable

Reliability Testing shows Stable Operation

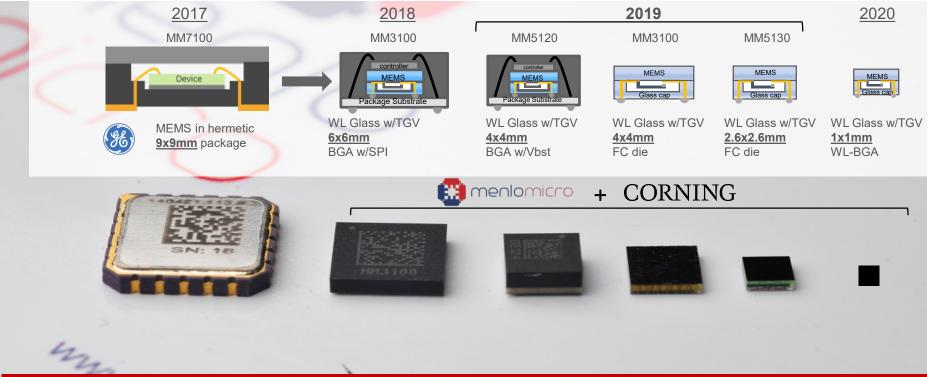
Continuous reliability testing for accelerated life evaluation:

- Multiple parallel automated testers capable of 20 die evaluation
- 3 ovens in operation at 3 different acceleration temperatures
- >10,000 die evaluated

Stable resistance <0.4 Ω for over 12 <u>billion</u> cycles



SPST 50W and 6GHz capability

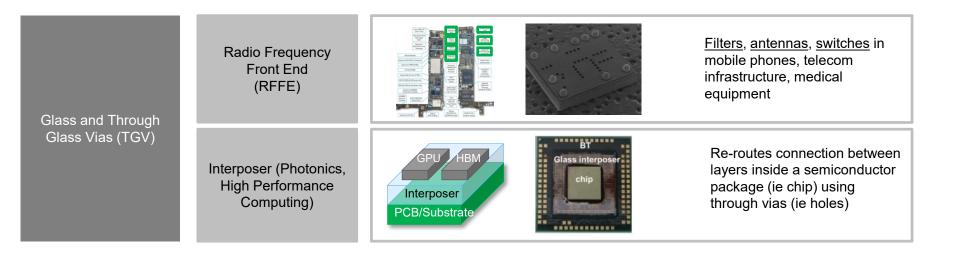

Freq	S11	S21	S12	S22	Freq	S11	S21	S12	S22
1 Ghz	-32.48dB	-0.056dB	-0.061dB	-32.093dB	1 Ghz	-0.058dB	-24.809dB	-24.920dB	-0.097dB
3 Ghz	-27.19dB	-0.100dB	-0.097dB	-33.716dB	3 Ghz	-0.535dB	-16.256dB	-16.557dB	-0.644dB
6 Ghz	-19.00dB	-0.148dB	-0.156dB	-17.302dB	6 Ghz	-0.647dB	-10.229dB	-10.634dB	-0.916dB

• Switch OFF:

• Switch ON:

RF Switches Packaging evolution

Corning-Menlo partnership is enabling the scale-up of a low cost TGV supply chain


RF Tunable Filter – Size, Weight & Power for **RF**

MM3100 Replacing PIN diodes in tunable radios

Ex. Mil Radio		With PIN diode UHF interstage (2W)	With DMS Technology UHF interstage (20W)	<u>Benefits:</u>	
Key metrics: • Fast frequency	Max input:	<2W	20W+	 10x increase in power handling 	
tuning • Lightweight • Long battery life • Reliability	Size:	200+ components (2-sided board) 50% area for complex pin-diode switch biasing	~25 components No pin-diodes, single- sided board, simple bias scheme	 80%+ reduction in components 75% reduction in board size Reduced need for thermal management, smaller box 	
	Insertion Loss:	> 3dB @ 500MHz	< 2dB @ 500MHz	• 33% reduction in RF losses, less heat, longer battery life	
	Power Consumption:	1.2W	<100mW	• 90% reduction in DC losses, less heat, longer battery life	
	Linearity:	IP3: ~40dBm	IP3: ~65dBm	Reduced distortion, higher data rates	

Potential to enable high power handling (5W-20W) in a 2W form factor

High Performance Substrate Material

Summary

- Material properties being leveraged into device level performance benefits
- RF Front End Usage cases broadening into Filters, Switches, Antennas
- RF MEMS Switches gain on:
 - Insertion Loss
 - Figure of Merit
 - Harmonics
 - Packaging Footprint
 - Thermal/Power Handling

CORNING