Corning[®] SMF-28[®] Contour Pro Optical Fiber

Product Information

CORNING

With a first-of-its-kind combination of ITU-T G.657.A2 bend resilience, 9.2 micron mode field diameter, and industry-leading low loss, Corning[®] SMF-28[®] Contour Pro optical fiber offers exceptional performance for installation and network efficiency. Its 190 micron diameter coupled with superior bend resilience makes SMF-28[®] Contour Pro fiber ideal for space, weight, and size optimization within optical networks. SMF-28[®] Contour Pro fiber meets Recommendation ITU-T G.657.A2 and is compatible and fully compliant with Recommendation ITU-T G.652.D.

Optical Specifications

Maximum Attenuation

Wavelength (nm)	Maximum Value (dB/km)
1310	≤ 0.32
1383*	≤ 0.32
1490	≤ 0.21
1550	≤ 0.18
1625	≤ 0.20

*Attenuation values at this wavelength represent post-hydrogen aging performance.

Attenuation vs. Wavelength

Range (nm)	Ref. λ (nm)	Max. α Difference (dB/km)
1285 - 1330	1310	0.03
1525 — 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
7.5	1	1550	≤ 0.5
7.5	1	1625	≤ 1.0
10	1	1550	≤ 0.1
10	1	1625	≤ 0.2
15	10	1550	≤ 0.03
15	10	1625	≤ 0.1

*The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength (nm)	Point Discontinuity (dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

λ_{cc} ≤ 1260 nm

Mode Field Diameter

Wavelength (nm)	Mode Field Diameter (μm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm) _	[ps/(nm•km)]
1550	≤ 18.6
1625	≤ 23.7

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S₀): \leq 0.092 ps/(nm²·km)

Polarization Mode Dispersion (PMD)

	Value (ps∕√km)
PMD Link Design Value	≤ 0.04*
Maximum Individual Fiber PMD	≤ 0.1

*Complies with ITU-T G.650-2 Appendix IV, (m = 20, Q = 0.01%), August 2015.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD_{Q}). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

ColorPro[®] Identification Technology

SMF-28[®] Contour Pro fiber is also available in colored and ringmarked variants, enabled by ColorPro[®] identification technology. Corning fibers with ColorPro[®] identification technology deliver better efficiency in cable manufacturing, simplify inventory management, and leverage an enhanced fiber product offering.

How to Order

Contact your sales representative, or call the Optical Fiber Customer Service Department: Ph: 1-607-248-2000 (U.S./Can.) +44-1244-525-320 (Europe)

Email: cofic@corning.com Please specify the fiber type, attenuation, and quantity when ordering.

Dimensional Specifications

Glass Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 μm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Uncolored Coating Diameter	188 ± 5 μm	
Coating-Cladding Concentricity	≤ 10 μm	

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

Operating Temperature Range: -60°C to +85°C *Reference temperature = +23°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa). Higher proof test levels are available.

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction (n_{eff})	1310 nm: 1.4673 1550 nm: 1.4680
Fatigue Resistance Parameter (n _d)	20
Coating Strip Force	Dry: 0.5 lbs. (2 N) Wet, 14-day room temperature: 0.5 lbs. (2 N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB

CORNING

Corning Incorporated One Riverfront Plaza Corning, NY 14831 U.S.A. www.corning.com/opticalfiber Corning, SMF-28, and ColorPro are registered trademarks of Corning Incorporated, Corning, NY.

© 2024 Corning Incorporated. All Rights Reserved.