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This list compiles scientific papers published that utilize Corning® Advanced-Flow™ Reactor (AFR) 
Technology. Corning expresses our thanks to all authors who used our technology in their experiments. If 
you would like to include your published paper using AFR Technology, please contact us at 
reactors@corning.com and we will be pleased to review your submission for inclusion in this document. 

1. Reactors: Goal, Design & 
Characterization 

Corning developed AFR technology to support 
the synthetic industry as an ongoing effort 
toward process intensification.1 For this, 
switching the synthetic paradigm2 from 
traditional batch to flow chemistry was pursued.3 
The reactors were designed towards high scale 
production4–10  with a variety of applications.11  

2. Reactors Engineering & 
Characterization 

Using Corning’s expertise, reactors were 
designed either in resistant glass12 or Silicon 
Carbide (no chemical limitation found yet).13 The 
mass transfer properties,14 heat exchange,15 
pressure drop16 and residence time distribution17 
were fully characterized  for single18,19 or dual 
phase systems.20–22 The hydrodynamic properties 
of liquid and gas liquid23 flow were published.24,25 
The same work was also carried out for the 
Corning® Low-Flow Reactor.26 Light was also 
characterized in photochemical reactors.27 
Behavior of gas bubbles was also studied.28 

To help with industrialization, the design of 
Corning’s reactors ensured a scalable system 
such as liquid/liquid systems from Low-Flow to 
G129, and up to production.30,31 The concept 
behind flow reactors and scale-up has been 
summarized.32 

3. Published applications in 
Corning AFR 

3.1. Photochemistry 
Photochemistry is possible due to an LED system, 
used from laboratory to industrial scale.33–35 
While each individual wavelength was 
characterized,27 the behavior of a multiphasic 
system with photochemistry was also 
characterized.36 

3.1.1. Gas photochemistry: Oxygen 
oxidation.  
For  alpha-terpinene oxidation, optimizing 
photochemistry guidelines were published.37 β-
dicarbonyl compounds were enantioselectively 
oxidated.38 Sulfured Methionine amino acid was 
oxidisized39 and the protocol was extended so 
that mustard gas can be neutralized by air.40 The 
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generation of hypochlorite for this work can be 
performed continuously.41 Use of sensitizer on 
nanoparticles was compared to batch for an 
oxygen oxidation.42 Function of terminal N-
Methyl groups into aldehydes could also be 
performed without metals.43 
 

3.1.2. Materials  

Gold nanoparticles can be synthesized, showing 
the multi-purpose possibility of the reactor.44 On 
top of it, daily use of aqua regia showed the 
chemical tolerance of the reactor. 

3.1.3. Halogen Photo-Chemistry 

Iodoperlfuoroalkylation of alkenes were carried 
out.45 Benzylic bromination reaction was also 
successfully performed46. Another example on 
G1 scale using NBS was successful.47 An atom-
economical selective chlorination was also 
performed.48 Synthesis of Thiomorpholine at 4 M 
via a Telescoped Photochemical Thiol–Ene/ 
Cyclization Sequence was performed.49 

3.1.4. Potentially hazardous species “in 
situ”  

Potentially hazardous species can be generated 
and used in situ, leveraging the inherently safer 
technology used in continuous manufacturing. 
Amongst them, Bromine can be generated and 
reacted in situ at laboratory50 and industrial 
scales.51,52 Similarly, nitrosyl chloride can 
perform photonitrisation.53 N-Chloroamines 
were synthesized metal-free by radical addition 
reactions in continuous flow.54,55 Hypochlorites 
were also synthesized in situ.41 

 

 

3.1.5. Cycloaddition  

Selective photoredox transformation can be 
performed.56 [2+2] Cycloaddition reaction, 
supported in silico, were performed in G1 
reactors .57 Cerium also catalyzed Cycloalkanols 
Cycloaddition58 and functionalize alkanes.59 

Using renewable source chemicals, γ-
butyrolactone were synthesized.60  
 

3.1.6. Organometallics 
Using Nickel as a catalyst, arylhydrazines were 
synthesized.61 Using inline NMR monitoring, 
Nickel Negishi coupling reactions were also 
carried out.62 An API intermediate was 
synthesized this way.63 

3.1.7. Green Chemistry 
Direct metal free organocatalytic arylation 
coupling to aryl bromide was performed.64 

3.2. Thermal Chemistry 
 

3.2.1. Classical Chemistry/Batch to Flow 

Plant design and economic study of Ibuprofen 
and artemisinin was evaluated in flow.65 The use 
of the appropriate analytical tools (such as 
Raman spectroscopy) is an asset to ensure a full 
optimization of process in flow.66  

Collecting internal data, a Moffat-Swern 
oxidation was translated from Batch to Flow 
Chemistry.67 This showcase highlights the 
number of possible reactions which can be used 
in flow. The exothermic chlorination of a 
compound with thionyl chloride was performed 
from laboratory to industrial scale both in 
simulation and experimentally.68 Cyclic 
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phosphate could be accessed through flow 
chemistry.69 

3.2.2. Synthesis of potentially hazardous 
chemicals  

Using flow reactors, potentially hazardous 
species can be synthesized using inherently safer 
technology. 

3.2.2.1. Nitric acid use.  

Alcohol esterification with nitrous acid, while 
being an exothermic process, could be carried 
out successfully in G1 Reactors and  turned into 
synthetically useful alkyl nitrites.70 Similar 
nitration reactions can be performed 
effectively.71 

3.2.2.2. Nitrogen/Azide compounds,  

While potentially hazardous but synthetically 
interesting, these reactions have been 
successfully implemented in AFR technology. 
Monomethylhydrazine was synthesised.72 
Despite the risks associated with hydrazoic acid, 
there is a synthesis of Diphenylphosphoryl 
azide.73 Using azides, Ritalin was synthesized.74 
Similarly, in situ, generated diazomethane was 
used in a synthetic way.75 Cyclopropanation was 
successfully implemented through Design of 
Experiment strategy.76  

Benzoic acid alkylation reaction, generating and 
consuming in situ dangerous intermediate 
species, was performed in flow.77 Tetrazole 
coupling reaction was  performed, keeping in 
check all parameters in typically unstable 
condition.78  

 

 

3.2.2.3. Oxidation 

Peracids, unstable species formed in conditions 
where their stability depends upon a reliable set 
of unstable conditions, were synthesized 
effectively.79 Synthesis of Modafinil was 
performed smoothly with Hydrogen Peroxide as 
an oxidant.80 

3.2.2.4. Use of Gas.  

Using oxygen, benzylic oxidation was carried out 
in metal free and reagent recyclable conditions.81 
Oxygen was also helped with the hydroxylation 
of ketones and ketamine synthesis.82 

Ozonolysis, which is potentially hazardous even 
at a trace level, was performed in a Low Flow 
Reactor.83 A successful case was published at kilo 
lab scale.84 

On the other hand, reduction via hydrogenation 
could be performed, too.85,86 For a 
hydrogenation reaction, a system with Pd 
allowed a temporary Pd deposit in situ.87 

Challenging Bunsen reaction (Gas SO2/liquid) 
requiring precise mixing was industrially 
implemented. 88,89 

Synthesis of an anti-bacterial agent performic 
peracid was successfully carried out.79 

The electrophilic α-aminohydroxylation of  
ketones was carried out by preparing in situ the 
1-chloro-1-nitrosocyclopentane reagent.90 

3.2.3. Green Process  

Using flow chemistry, a strong emphasis on 
Green Chemistry is pushed.91,92  
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3.2.3.1. Greener conditions 

First, existing applications are optimized in a 
more ecofriendly way. Tertiary Ketone were 
hydroxylated without need for metal.93 

Cyclic organic carbonates were synthesized94 and 
solvent-free options were also developed.95 
Solvent free biphasic alcohol oxidation was 
carried out and scaled up in a Low Flow Reactor 
.96 Using bleach, alcohol was oxidized and scale 
up in a biphasic mixture in a metal free process.97 
LAH reduction of esters into aldehyde was 
performed in mild conditions.98 Epoxide 
nucleophilic opening was used for a coupling  
en route to the synthesis of an API, telescoping 
steps and removing DCM as a solvent.99  

3.2.3.2. Sustainable Material 

Synthesis from green glycerol towards oxiranes 
was performed. Biodiesel could be synthesized 
from cooking oil.100 Similarly, biodiesel additive 
STBE was synthesized from bio-sourced 
glycerol.101,102  Total synthesis of Modafinil was 
entirely performed in flow in 3 steps.80 

3.2.3.3. Biosynthesis 

The bioprocess of lipase β-catalyzed isoamyl 
acetate synthesis was carried out in flow.103  

3.2.4. Material Chemistry/Nanoparticles  
Iron oxide nanoparticles were synthesized.104 
Further characterization of the equipment and 
synthesis of iron nanoparticles was successfully 
carried out.19 Micro-encapsulation led to 
smooth, monodisperse and stable 
components.105 ZnMgO nanoparticles were 
synthesized as well.106 

Working on asteroids, valuable metals were 
extracted.107 
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