Glass Heroes
They are visionaries … pioneers … renegades.
They are scientists … artists … innovators.
Through glass, they see possibility and create a new reality.
Through glass, they transform lives.
Corning’s Glass Heroes
These are just a few of the steadfast inventors who fueled advancements in glass at Corning Incorporated. Their discoveries paved the way for innovative products and entire industries and in some cases, revolutionized our lives. Below are some of our Glass Heroes.
Frederick Carder
One look and for Frederick Carder, it was love at first sight. As a young man, Carder spotted a glass replica of the Portland Vase, the most famous piece of Roman cameo glass. After seeing the vase at an artist’s studio, Carder made glass his life’s passion. He was 16.
Carder later described that experience as being “struck with the possibilities of glass.” Those possibilities developed into several technical and artistic discoveries in glassmaking – one of them being the renowned Steuben Glass brand that he co-founded.
“Frederick Carder developed and refined innovative techniques still used today, but also developed a remarkable palette of colors and finishes in glass,” explained Rob Cassetti, senior director, Creative Services and Marketing at the Corning Museum of Glass.
Gordon Scott Fulcher
Glass can be a material of many appearances. When molten hot, it can appear gooey. When cooled, it can look frozen. This varying consistency -- or viscosity -- of glass historically had been hard to control, let alone predict, until Dr. Gordon Scott Fulcher’s mathematical discovery.
Fulcher, a legendary Corning scientist, developed a formula that would be later called the "Fulcher equation." First published in a 1925 research paper during Fulcher’s time at Corning, the formula became the industry standard for measuring how temperature impacts different liquid or solid states of glass.
As a result, the glass industry gained a stronger understanding of the material and how to best form and manufacture it.
Clint Shay
If you have a smartphone, television, or tablet, you might have to thank Clint Shay. Shay, and his colleague Stuart Dockerty, invented a method to produce glass that is astonishingly thin, smooth, and flat. In this method, called the fusion process, molten glass flows downward to form a single sheet of pristine glass. When the process was first invented in 1964, it was used to produce glass for automotive windshields. With the raise of liquid crystal displays (LCDs) in the mid-1980s, the fusion process provided the stable and precise glass required by display manufacturers. Today, this process, originally discovered by Shay and his colleague, is still used to create LCDs and ultra-high definition televisions, smartphones, tablets, and other devices.
Dr. J. Franklin Hyde
In 1930, Dr. J. Franklin Hyde, an organic chemist, was helping to install PYREX® glass architectural panels at Rockefeller Center in New York City. During the installation, he quickly discovered the that the glass pieces were not adhering to each other or the supporting structure. The challenge was that glass pieces required a special cementing agent. This inspired him to experiment with bounding agents for glass and plastics. He later invented the first resins and compounds for bounding glass and glass fibers which helped lay the groundwork for the Owens Corning Corporation. Hyde also developed a process called the flame hydrolysis. This process was adapted into the vapor deposition process, a manufacturing method that is key to creating optical fiber.
Dr. Donald B. Keck, Dr. Peter Schultz & Dr. Robert Maurer
When Donald Keck arrived at Corning in 1968, the telecommunications industry needed an alternative to the existing copper wire used to transfer data across the country. Copper could not sustain transmission across greater distances.
A few years later, Keck was working alone one evening in his laboratory when he made a giant technological leap that catapulted Corning and his fellow researchers — Dr. Robert Maurer and Dr. Peter Schultz — to fiber optic fame. They invented the first low-loss optical fiber that could transmit data in the form of light across significant distances. This discovery transformed the communications industry.
Today, with more than two billion kilometers of optical fiber installed worldwide, this glass invention continues to enable the internet and the world of connectivity in which we live.
William Churchill & George Hollister
In the early 1900s, there was a dangerous problem in the railroad industry. Glass globes in railway signal lanterns were shattering during extreme temperature changes.
Corning scientists William Churchill and George Hollister developed a glass called “Nonex” (short for non-expansion) that could withstand dramatic jolts of heat and cold. In addition, Nonex glass was more durable and visible at greater distances. As a result, railroad accidents dramatically decreased. This innovation not only improved people’s lives; it helped saved people’s lives.
Jesse & Bessie Littleton
In 1913, Corning hired physicist Dr. Jesse Littleton to investigate potential new products that could be made from heat-resistant glass. His wife, Bessie, whose earthenware casserole dish had recently cracked in the oven, asked her husband to bring her a piece of more robust material. He arrived home with the sawed-off bottoms of two glass jars that Bessie used to bake a sponge cake. Since the glass held up wonderfully, she went on to cook steaks and French fries in it.
Based on Bessie’s informal experiments, Corning created an improved glass formula that became Pyrex. The Pyrex line of highly durable cookware became a household name — and an extremely hot product — by the 1920s.
Dr. S. Donald Stookey
Ever made a luscious lasagna? If so, you may need to thank Donald Stookey.
Stookey’s most famous invention appeared in most American kitchens after an accident in 1952. That’s when the young scientist, researching the properties of glass, heated a glass plate in an oven that malfunctioned. Instead of heating to 1,100 degrees, the oven shot up to 1,600 degrees. Anticipating a molten mess, Stookey was surprised to find an opaque, white plate that was very robust and resistant to shattering. Stookey had just discovered glass ceramics — a breakthrough that led to the development of CorningWare®. This durable, heat-resistant line of cookware is one of Corning’s most successful product lines.
The material used to make CorningWare® was so strong that the military used it in guided missile nose cones and NASA used it for ceramic glass nuts and bolts on the space shuttle.
Stookey earned 60 U.S. patents. His other innovations included photochromic glass for eyeglasses and photosensitive glass that led to color television picture tubes. He received the National Medal of Technology in 1986.